Density of rational points on isotrivial rational elliptic surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Points on Elliptic Surfaces

x.1. Elliptic Surfaces Deenition. An elliptic surface consists of a smooth (projective) surface E, a smooth (projective) curve C, and a morphism : E ?! C such that almost all bers E t = ?1 (t) are (smooth projective) curves of genus 1. In addition, we will generally assume that our elliptic surfaces come equipped with an identity section 0 : C ?! E which serves as the identity element of the gr...

متن کامل

Rational Points on Certain Elliptic Surfaces

Let Ef : y 2 = x + f(t)x, where f ∈ Q[t] \ Q, and let us assume that deg f ≤ 4. In this paper we prove that if deg f ≤ 3, then there exists a rational base change t 7→ φ(t) such that there is a non-torsion section on the surface Ef◦φ. A similar theorem is valid in case when deg f = 4 and there exists t0 ∈ Q such that infinitely many rational points lie on the curve Et0 : y 2 = x + f(t0)x. In pa...

متن کامل

Rational Points on Cubic Surfaces

Let k be an algebraic number eld and F (x0; x1; x2; x3) a non{singular cubic form with coeecients in k. Suppose that the pro-jective cubic k{surface X P 3 k given by F = 0 contains three coplanar lines deened over k, and let U (k) be the set of k{points on X which does not lie on any line on X. We show that the number of points in U (k), with height at most B, is OF;"(B 4=3+") for any " > 0.

متن کامل

Density of Rational Points on Diagonal Quartic Surfaces

Let a, b, c, d be nonzero rational numbers whose product is a square, and let V be the diagonal quartic surface in P defined by ax + by + cz + dw = 0. We prove that if V contains a rational point that does not lie on any of the 48 lines on V or on any of the coordinate planes, then the set of rational points on V is dense in both the Zariski topology and the real analytic

متن کامل

The Density of Rational Points on Curves and Surfaces

Let n ≥ 3 be an integer and let F (x) = F (x1, . . . , xn) ∈ Z[x1, . . . , xn] be an absolutely irreducible form of degree d, producing a hypersurface of dimension n − 2 in Pn−1. This paper is primarily concerned with the number of rational points on this hypersurface, of height at most B, say. In order to describe such points we choose representatives x = (x1, . . . , xn) ∈ Z with the xi not a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra & Number Theory

سال: 2011

ISSN: 1944-7833,1937-0652

DOI: 10.2140/ant.2011.5.659